A nontrivial lower bound on the Shannon capacities of the complements of odd cycles

نویسندگان

  • Tom Bohman
  • Ron Holzman
چکیده

This paper contains a construction for independent sets in the powers of the complements of odd cycles. In particular, we show that α ( C 2 2n+3 ) ≥ 22n + 1. It follows that for n ≥ 0 we have Θ(C2n+3) > 2, where Θ(G) denotes the Shannon capacity of graph G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Limit Theorem for the Shannon Capacities of Odd Cycles I

This paper contains a construction for independent sets in the powers of odd cycles. It follows from this construction that the limit as n goes to infinity of n+ 1/2−Θ(C2n+1) is zero, where Θ(G) is the Shannon capacity of the graph G.

متن کامل

A Limit Theorem for the Shannon Capacities of Odd Cycles. Ii

It follows from a construction for independent sets in the powers of odd cycles given in the predecessor of this paper that the limit as k goes to infinity of k+ 1/2−Θ(C2k+1) is zero, where Θ(G) is the Shannon capacity of a graph G. This paper contains a shorter proof of this limit theorem that is based on an ‘expansion process’ introduced in an older paper of L. Baumert, R. McEliece, E. Rodemi...

متن کامل

Some remarks on the Shannon capacity of odd cycles

We tackle the problem of estimating the Shannon capacity of cycles of odd length. We present some strategies which allow us to nd tight bounds on the Shannon capacity of cycles of various odd lengths, and suggest that the diiculty of obtaining a general result may be related to diierent behaviours of the capacity, depending on the \structure" of the odd integer representing the cycle length. We...

متن کامل

Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic

We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...

متن کامل

A New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks

In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2003